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Abstract
Alzheimer’s disease (AD) is a multifactorial 

neurodegenerative disorder. Mouse models have 
been indispensable to offer insights into the crucial 
pathophysiology of AD. However, the majority of mouse 
models are developed by overexpression of familial AD 
genetic mutations such as APP and PS1/2, which account for 
only a small percentage of AD cases. In this manuscript, we 
summarized the development of a novel late-onset sporadic 
AD model, namely Thy1-ApoE4/C/EBPβ double transgenic 
mouse, carrying no genetic mutations but displaying key AD 
pathologies in an age-dependent manner. This mouse model 
is developed based on the C/EBPβ / AEP pathway that plays 
a crucial role in driving AD development.

1. Introduction
Alzheimer’s disease (AD) is the most common type 

of dementia with an insidious onset, long course and 
progressively exacerbating pathological changes [1, 2]. The 
typical symptoms of AD include cognitive impairment, 
memory loss and behavioral dysfunction, while the 
hallmarks of AD pathology are featured by brain atrophy, the 
deposition of extracellular β-amyloid (Aβ) plaques and the 
formation of intracellular neurofibrillary tangles (NFT) in 
the brain (Figure 1). The amyloid senile plaques are deposited 
by crippled clearance and abnormal processing of amyloid 
precursor protein (APP) by several secretases leading to 
excessive accumulation of Aβ [3, 4], and NFT is formed 
by highly phosphorylated and/or truncated microtubule-
associated tau proteins [5, 6].

AD is generally divided into familial and sporadic AD. 
The familial AD (also known as early onset AD) constitutes a 
small portion in AD cases (less than 1%), which is caused by 
autosomal dominant mutations of human APP, presenilin 1 
and 2 (PSEN 1/2). By contrast, most of AD cases (> 99%) are 
sporadic AD (also known as late onset AD) with an unknown 
etiology involving various factors such as age, genetics, life 
style and environmental influence [7]. Despite of abundant 
research, the exact mechanism how these factors interact 
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and contribute to neurodegeneration as well as cognitive 
impairment remains incompletely understood [8]. 

2. Development of AD mouse model
For decades of AD research, animal models serve as 

an essential tool to understand the regulatory mechanisms 
underlying AD pathogenesis and to test therapeutic 
approaches in preclinical studies [9]. The most commonly 
used experimental AD animal models are rodents based and 
great efforts have been paid to generate transgenic mouse 
models by overexpressing genetic mutations implicated 
in familial AD [10, 11]. These mouse models essentially 
display certain key histopathology of AD patients, yet none 
of them capture all aspects of AD pathological, biochemical 
and behavioral features [12, 13]. Furthermore, most of the 
genetic mutation-based familial AD mouse models represent 
an extreme condition that would never occur in human AD 
patients. Therefore, appropriate models that mimic late onset 
AD are urgently needed to bridge the gap between the basic 
research and clinical translation.

2.1 Familial AD mouse models
Since the first transgenic mouse model was developed in 

1995 [14], hundreds of AD mice were genetically engineered 
and extensively described [10-12, 15-17]. In general, most of 
the AD mice are developed by transgenic tool of APP mutation, 
either alone or combination with familial AD mutations such 
as PSEN1, PSEN2 and/or microtubule-associated protein tau 
(MAPT), although there is no tau mutation in AD.

For instance, the APP/PS1 mouse model was generated 
through the co-expression of the APPSwe mutant and ΔE9 
mutant of PSEN1 [18]. The 5 × FAD strain, a widely used 
AD model, combines the APPSwe mutation with the Florida 
(I716V) and London (V717I) mutations of APP, along with 
the M146L and L286V mutations of PSEN1 [19]. These two 
models replicate AD pathological hallmarks such as Aβ 
plaques, neuronal degeneration and progressive cognitive 
deficits, but not tau pathology. Therefore, the 3 × Tg strain, 
which accommodates three mutations, i.e., APP with APPSwe 
mutation, tau with P301L mutation and PS1 with M146V 

Figure 1: Pathology of Alzheimer’s disease.
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mutation, was developed [20]. As expected, this experimental 
model presents both β-amyloid deposits and tau pathology in 
a tempo-spatial manner.

2.2 C/EBPβ / AEP pathway plays a key role in 
driving AD development

Recently, the C/EBPβ / asparagine endopeptidase (AEP) 
pathway has been identified as a core regulatory mechanism 
triggering the occurrence and development of AD [21]. C/
EBPβ, an important transcription factor, regulates various 
cellular and biological functions; while AEP (also called 
legumain) is a lysosomal asparagine endopeptidase that 
can be auto-catalytically activated by sequential removal 
of N- and C-terminal peptides at different pH values [22]. 
The expression of both C/EBPβ and AEP is age-dependently 
increased in the brain, tightly correlated to AD development 
[23]. On one hand, C/EBPβ promotes the expression of 
genes essential for AD pathologies, including APP, MAPT 
and β-secretase (BACE1) [24, 25]. On the other hand, it also 
plays an essential role in mediating transcription of AEP, 
which acts as a novel δ-secretase that simultaneously cleaves 
APP, Tau, and BACE1, generating fragments like APP N585, 
APP C586, Tau N368 and BACE1 N294 (Figure 2). These 
truncated proteins further accelerate Aβ accumulation and 
Tau aggregation [26, 27]. Conversely, deletion of AEP or C/
EBPβ from AD mouse models substantially diminishes AD 
pathologies, restoring the cognitive functions [26-28].

2.3 Thy1-ApoE4/C/EBPβ transgenic mouse as a 
novel sporadic AD model

Our recent work developed a new mouse line with 
neuronal specific expression of human apolipoprotein E4 
(ApoE4) and C/EBPβ genes, which acts as a sporadic AD 
model without any AD mutated genes [29, 30]. ApoE4 
is a major genetic risk determinant for AD and drives its 
pathogenesis via Aβ-dependent and -independent pathways 
[31]. Under physiological conditions, ApoE is mainly 
expressed and secreted by astrocytes, mounting evidence 
shows that ApoE4 is also expressed in neurons under 
stresses or pathological condition [32, 33]. In comparison 
to ApoE3, C/EBPβ selectively promotes ApoE4 expression 
in neurons of AD patients, leading to Aβ clearance 
impairment and increased aggregation [34]. Interestingly, 
ApoE4 alleles strongly increased C/EBPβ activation in AD 
patient brains with escalating Braak stages, and this effect 
was more prominent than ApoE3 alleles [35]. Remarkably, 
ApoE4 also synergistically activates CEBPβ/AEP pathway 
through feedback with 27-hydroxycholesterol, exacerbating 
AD pathologies [35]. Therefore, mouse with neuronal 
specific expression of human ApoE4 and C/EBPβ driven 
by the mouse Thy1 promoter (Thy1-ApoE4/C/EBPβ) was 
developed and was proven to act as a sporadic model via 
extensive examination [29, 30]. 

There are 3 amino acids difference between mouse Aβ42 
and human counterpart. Mounting evidence shows that 
human Aβ42 is much more prone to aggregate than mouse 
Aβ42 in vitro [36, 37]. The homology between mouse and 
human Tau proteins is around 89% [38]. Mouse Aβ has been 
questioned to aggregate into pathological fibrils, though 
extensive previous studies support that mouse Aβ and mouse 
Tau undeniably aggregate into amyloid deposits [39-41], 
mimicking the pathological features in human AD patient 
brains. To interrogate whether mouse senile plaques and 
NFT in Thy1-ApoE4/C/EBPβ transgenic mice indeed mimic 
human counterparts in 3xTg mice, these two models were 
compared model side-by-side. Notably, the sporadic AD 
mice display gradual Aβ aggregation and NFT formation in 
the brain validated by Aβ PET and Tau PET, similar to 3xTg 
mice.  By using mouse endogenous machinery, this ApoE4/C/
EBPβ double transgenic strain gradually develops Aβ and tau 
pathologies in a spatio-temporal manner without expression 
of any FAD mutation genes. Moreover, mouse Aβ and Tau 
aggregates extracted from this model display neurotoxicity 
and can propagate in the brains of AD mouse [29].

#11 A, a brain permeable AEP specific inhibitor with 
great oral bioavailability, blocks AEP cleavage of APP and 
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Figure 2: The role of C/EBPβ / AEP pathway in the development of 
Alzheimer’s disease
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Tau dose-dependently. It has been previously shown that 
AEP inhibitor #11A reveals promising therapeutic efficacy 
in 3xTg mice [42]. To test whether #11 A is also a disease-
modifying clinical candidate for pharmacologically treating 
sporadic AD, this sporadic AD mouse model was treated 
with #11 A, which strongly inhibits AEP and prevents mouse 
APP and Tau fragmentation by AEP, leading to reduction 
of mouse Aβ42 (mAβ42), mAβ40 and mouse p-Tau181 
levels in Thy1-ApoE4/C/EBPβ transgenic mice in a dose-
dependent manner. Chronic oral administration of #11 A 
decreases mAβ aggregation as validated by Aβ PET assay, Tau 
pathology, neurodegeneration and brain volume reduction, 
leading to alleviation of cognitive impairment [43]. Hence, 
this sporadic AD model of ApoE4/C/EBPβ transgenic mice 
demonstrate comparable AD pathological features to the 
well-established 3xTg familial AD mice in the absence of any 
human mutations, underscoring that C/EBPβ/AEP signaling 
is the single key mechanism driving AD pathogenesis. The 
stress or lesion-induced neuronal ApoE4 acts as a core 
trigger that activates the crucial pathway initiating the entire 
AD pathological cascade in a tempo-spatial manner. 

3. Conclusion
Mouse models significantly contributed to our 

understanding of AD pathophysiology, offering valuable 
insights into disease mechanisms and potential therapeutic 
targets. Identification of C/EBPβ/AEP as a single key 
mechanism driving AD pathologies allows us to establish 
the sporadic AD mouse model that fully simulates the 
tempo-spatial features of AD patients. However, challenges 
in translating findings to the clinics underscore the 
need a multifaceted approach that integrates advanced 
preclinical models, robust biomarkers, and a comprehensive 
understanding of human disease heterogeneity. Therefore, 
aligning preclinical study methods with clinical research 
practices and addressing these challenges and leveraging 
emerging technologies will be pivotal in driving the next 
wave of breakthroughs in AD research, ultimately leading to 
effective treatments for this devastating disease.
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