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1. Abstract
Emerging evidence demonstrates the potential 

neuroprotective function of melatonin against 
neurodegenerative diseases. In a recent genome-wide 
association study for melatonin secretion, we identified five 
genetic loci associated with melatonin secretion, including 
ZFHX3, GALNT13, GALNT15, LDLRAD3, and SEPP1. 
Here we review the biological function of these genes in 
respective of neuroprotection. The ZFHX3 gene encodes a 
transcription factor highly expressed in the suprachiasmatic 
nucleus. Mutation of Zfhx3 in mice modulates circadian 
rhythm through direct interaction with the AT motifs of 
downstream circadian genes. ZFHX3 also activates ATM, a 
kinase that activates multiple downstream proteins important 
for DNA repair. The activation of ATM in cytoplasm protects 
cerebellar neurons from genotoxic damage. GALNT13 and 
GALNT15 are implicated in mucin-type O-glycosylation, but 
whether they have a role in neurodegenerative diseases is to 
be elucidated. The LDLRAD3 gene belongs to the low-density 
lipoprotein receptor gene family. LDLRAD3 associates with 
C99, the β-secretase product of amyloid precursor protein, 
which may shift the non-amyloidogenic α-secretase pathway 
to the amyloidogenic β-secretase pathway. In addition, C99 
accumulation in neurons contributes to neuronal death. C99 
is degraded through the endosomal-lysosomal pathway and 
the association of LDLRAD3 with C99 may modulate the 
degradation of C99 and accumulation in neurons. The SEPP1 
gene encodes the selenoprotein P, a transporter of selenium for 
maintaining the selenium pool, which is subsequently taken 
up by neurons via the apolipoprotein E receptor 2. Selenium 
is the essential component of many anti-oxidative proteins, 
such as glutathione peroxidases and thioredoxins. Mutation of 
Sepp1 causes extensive brain damage, including poor motor 
coordination, impaired spatial learning, cognitive decline, and 
increased tau phosphorylation. These data provide a genetic 
link between melatonin and neurodegenerative diseases.
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2. Introduction
Melatonin has received increasing attention beyond its 

conventional role in circadian rhythm because of its potential 
protective function for neurodegenerative diseases [1-8]. The 
biological pathways for its neuroprotective action include 
anti-inflammation, anti-oxidative stress, anti-excitability 
activity through glutamate and gamma-aminobutyric acid 
(GABA) receptors, improvement of mitochondrial functions, 
alternation of neurotransmitters, and modulation of apoptosis 
and autophagy [9-20]. Neurodegenerative diseases such 
as Alzheimer’s disease (AD), Parkinson’s disease (PD), and 
Huntington’s disease (HD) are mostly irreversible. However, 
emerging evidence shows that melatonin potentially reverses 
their symptoms [1,9-20]. The neuroprotective action of 
melatonin has been extensively reviewed and is beyond our 
scope of this mini-review. 

In a recent genome-wide association study (GWAS) for 
melatonin secretion, we identified five genetic loci associated 
with melatonin secretion, including ZFHX3, GALNT13, 
GALNT15, LDLRAD3, and SEPP1 [21]. Here we focused on 
the biological function of these five genes in the pathogenesis 
of neurodegenerative diseases and other neurological 
diseases.

2.1 ZFHX3 
The ZFHX3 gene encodes a zinc finger homeobox 3 

transcription factor and the human cardiac Na+ channel 
(Nav1.5). ZFHX3 is highly expressed in the suprachiasmatic 
nucleus (SCN), a small group of hypothalamic nerve cells 
located in the anterior part of the hypothalamus [22]. The 
SCN regulates circadian rhythm by a series of transcription-
translation feedback loops that manage the periodic 
expression of the clock genes [22]. SCN processes input from 
environmental signals, and then SCN transmits temporal 
response through downstream signals for physiological 
reactions, such as sleep-wake, body temperature, and 
locomotor activity. 

A dominant missense mutation of Zfhx3, termed “short 
circuit” (Zfhx3Sci) accelerates circadian rhythms and 
modulates retinal sensitivity to light in mice through direct 
interaction with the AT motifs of downstream genes [23,24]. 
Inducible or hypothalamus-specific knockout of Zfhx3 in 
mice also caused abnormality in the light-dark cycle [25, 
26]. These data indicate a crucial role of ZFHX3 in circadian 
rhythm (Figure 1).

Furthermore, ZFHX3 is involved in cell cycle regulation, 
development, and cellular differentiation. ZFHX3 activates 

ATM (ataxia telangiectasia, mutated), a kinase that 
phosphorylate multiple downstream proteins to regulate 
cell cycle arrest, repair of double-stranded DNA breaks, 
apoptosis, and autophagy. The activation of ATM in 
cytoplasm protects cerebellar neurons from oxidative stress 
and shows progressive loss of deep cerebellar nuclei neurons 
in the cerebellum in mice [27]. ZFHX3 was also shown to be 
required for differentiation of neurons including the medium 
spiny neurons in the striatum expressing dopamine receptors 
[28]. These data imply that ZFHX3 is involved in cerebellar 
function and the dopaminergic pathway (Figure 1).

2.2 GALNT13 and GALNT15
In the GWAS for melatonin secretion, we identified 

genetic loci within GALNT13 and near GALNT15 [21]. 
Both genes belong to the UDP-GalNAc: polypeptide 
N-acetylgalactosaminyltransferase family important 
for mucin-type O-glycosylation [29-31]. Mucin-type 
O-glycosylation proximal to β-secretase cleavage site has 
been shown to affect amyloid protein precursor (APP) 
processing and the accumulation of amyloid-β peptides 
(Aβ) [32]. Glycosylation also influences several biological 
processes in the central nervous system, such as cell 
adhesion, signal transduction, molecular trafficking, and 
neuronal differentiation. It has been implied to be involved 
in the pathogenesis of AD, PD, HD, multiple sclerosis, and 
amyotrophic lateral sclerosis [33] (Figure 1). However, the 
direct link between these two genes and neurodegenerative 
diseases is currently unknown.

2.3 LDLRAD3
The low-density lipoprotein receptor gene family encode 

a class of structurally related cell surface receptors that is 
most commonly associated with cholesterol homeostasis. 
Low density lipoprotein receptor class A domain containing 
3 (LDLRAD3) is one of the top five differentially expressed 
microglial genes that are related to familial AD [34] and 
increased LDLRAD3 expression in microglia suggested that 
lipoprotein metabolism may contribute to pathogenic APP 
processing and amyloid deposition [35]. The Aβ peptide, 
produced through sequential cleavage of the β-amyloid 
precursor protein (APP) by β- and γ-secretases, has also been 
postulated to be a hallmark of AD [36]. 

LDLRAD3 is found in microvascular endothelial cells and 
neurons of the cortex and hippocampus. Solid-phase binding 
assays that demonstrated that LDLRAD3 did not bind to 
the soluble APP fragment (sAPPα) released after α-secretase 
cleavage. In contrast, LDLRAD3 associate with C99, the 

https://en.wikipedia.org/wiki/Cell_surface_receptor
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β-secretase product of APP. Pulse-chase experiments confirm 
that LDLRAD3 significantly decreases the cellular half-life of 
mature APP, suggesting the association of LDLRAD3 with 
C99 may shifting the α-secretase pathway to the β-secretase 
pathway, resulting in enhanced Aβ production [37]. Growing 
evidence also demonstrated that C99 accumulation in 
neurons contributes to neuronal death in AD [38]. C99 is 
degraded through the endosomal-lysosomal pathway [39]. 
The association of LDLRAD3 with C99 may influence the 
degradation of C99 and accumulation in neurons. 

Many LDLR family members act as receptors for 
apolipoprotein E (APOE), whose are also strongly associated 
with AD, further implicating the involvement of LDLR 
family members in AD [40] (Figure 1).

Venezuelan equine encephalitis virus (VEEV) is a 
neurotropic alphavirus transmitted by mosquitoes that causes 
severe encephalitis and death in humans. Gene editing of 

mouse LDLRAD3 or human LDLRAD3 results in markedly 
attenuated viral infection of neuronal cells, which is restored 
upon complementation with LDLRAD3. LDLRAD3 binds 
directly to VEEV particles and enhances virus attachment and 
internalization into host cells [41]. A cryo-electron microscopy 
reconstruction revealed the complex of VEEV virus-like 
particles and the ectodomains of LDLRAD3. Atomic modeling 
of this interface is supported by mutagenesis and anti-VEEV 
antibody binding competition assays [42]. 

The outbreak of coronavirus disease 2019 (COVID-19) 
caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) has created a huge global crisis. The virus 
primarily targets lipid-producing cells due to viral tropism 
[43]. LDLRAD3 was one of the functional receptors for 
SARS-CoV-2 by a genome-wide barcoded-CRISPR screen. 
All these membrane proteins bind directly to spike’s 
N-terminal domain. Their essential and physiological 
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Figure 1.A graphic summary depicting the mechanism by which ZFHX3, LDLRAD3, GALNT13, GALNT15, and SEPP1 were related to 
neurodegenerative diseases and neurological dysfunction.   
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roles have been confirmed in either neuron or liver cells. 
In particular, LDLRAD3 mediates SARS-CoV-2 entry and 
infection in an ACE2-independent fashion. The identification 
of the novel receptors and entry mechanisms could advance 
our understanding of the multi-organ tropism of SARS-
CoV-2[44]. Besides providing natural veils for viral materials 
against host immunity, the inherent properties of some of 
these endogenous lipid particles to traverse the blood-brain 
barrier (BBB) also offer alternative routes for SARS-CoV-2 
neurotropism. Importantly, virus-driven neurological 
aberrations mediated by HDLs and exosomes are fueled 
by lipid rafts, which are implicated in the production and 
transmigration of these lipid particles across the BBB [43].

2.4 SEPP1 
Selenocysteine is recognized as the 21st amino acid, and is 

the component of many antioxidant selenoproteins including 
glutathione peroxidases and thioredoxins, which protect cells 
against oxidative damage [45]. SEPP1 (Selenoprotein P), a 
transporter for selenium, and its receptor, apolipoprotein E 
receptor 2 (apoER2) are essential for retaining selenium in the 
brain [46,47]. SEPP1 is mainly produced by hepatocytes and is 
distributed to peripheral tissues to main selenium pool, which 
is subsequently taken up by neurons via the apolipoprotein E 
receptor 2 [47,48]. A study has shown that Sepp1-knockout 
mice lost weight and developed poor motor coordination fed a 
basal diet supplemented with 1.0 mg selenium/kg [49]. Another 
study showed that Sepp1-deficient mice fed a diet containing 
selenium at or below the recognized dietary requirement of 
0.10 mg/kg developed motor dysfunction including wide 
stance, waddling gait, walking backward, hopping gait, tense 
rear legs, uncoordinated running episodes, inability to right 
from a lying position, hyperactivity with extended limbs, and 
inability to walk [48]. Sepp1-deficient mice had impaired 
performance on standardized tests including stride length, 
pole climb, and rotarod tests. Raising the dietary selenium 
supplement to 0.25 mg/kg prevented the impairment [48, 49] 
(Figure 1). 

Furthermore, Sepp1-deficient mice fed a selenium-deficient 
diet have extensive degeneration of the medial forebrain, 
somatosensory cortex, brainstem, thalamus, and hippocampus. 
The neurodegeneration was predominantly axonal with 
decreased dendritic length [50]. Sepp1-deficient mice fed a 
high-selenium diet (1 mg/kg) still developed disrupted spatial 
learning [51]. In addition, severe alterations were observed in 
synaptic transmission, short-term plasticity, and long-term 
potentiation in the hippocampus area [51]. Another study 
using Sepp1-deficient mice showed that SEPP1 and its receptor 

low-density lipoprotein receptor-related protein 8 (LRP8) are 
required for the exercise-induced increase in hippocampal 
neurogenesis [52]. Dietary selenium supplementation restored 
neurogenesis and reversed the cognitive decline associated with 
aging and hippocampal injury [53].

Additional deletion of selenocysteine lyase, an 
enzyme essential for selenium homeostasis, aggravates 
the phenotype of Sepp1-deficient mice [53]. These mice 
needed supraphysiological selenium supplementation to 
maintain survival and survived mice exhibited impaired 
motor coordination, audiogenic seizures, and brainstem 
neurodegeneration [53]. Interestingly, deletion of the SEPP1 
gene in dogs also leads to CNS atrophy and pronounced 
cerebellar ataxia [54]. Collectively, SEPP1 deficiency leads 
to a range of neurodegenerative changes, including impaired 
motor coordination, spatial learning, and cognitive function 
demonstrated in animal models. 

SEPP1 was also found to be highly expressed in 
substantia nigra and with its expression localized within the 
centers of Lewy bodies, the pathological hallmark of PD. 
SEPP1 expression was significantly reduced in substantia 
nigra from patients with PD compared with controls [55]. 
Furthermore, Sepp-1 knockout mice displayed increased 
tau phosphorylation in the hippocampus, possibly resulting 
from intracellular zinc changes. These data suggest that 
SEPP1 potentially participates in the pathogenesis of PD and 
AD [56] (Figure 1).

3. Conclusion
Candidate genes regulating melatonin secretion were 

identified via GWAS [21]. Disruption of these genes is associated 
with disturbed circadian rhythm, cerebellar dysfunction, 
impaired motor coordination, impaired spatial learning, 
decreased cognitive function, increased Aβ accumulation and 
tau phosphorylation, brainstem degeneration, and severe viral 
infection of the central nervous system. Whether these effects 
are direct or are mediated through secretion of melatonin is 
current unknown. These findings provide additional genetic 
evidence supporting the relationship between melatonin and 
neurodegenerative diseases.
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